CUSTOMER STRESS PREDICTION IN TELECOM INDUSTRIES USING MACHINE LEARNING
نویسندگان
چکیده
In the competitive world especially in enterprises market maintaining valuable customers is becoming a difficult task. one situation losing customer like decrease profits for telecom industry growth, another cost of acquiring new much higher than retaining existing customers, this critical industries should focus on customers. This project will analyze data which was collected as open dataset and predict stress by applying supervised machine learning algorithms mainly using Linear Discriminant Analysis, Support Vector Machine, K Nearest Neighbor Random Forest.
منابع مشابه
A Survey on Customer Churn Prediction using Machine Learning Techniques
The fast expansion of the market in every sector is leading to superior subscriber base for service providers. Added competitors, novel and innovative business models and enhanced services are increasing the cost of customer acquisition. In such a fast set up, service providers have realized the importance of retaining the on-hand customers. It is therefore essential for the service providers t...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملAnalysis of Customer Churn prediction in Logistic Industry using Machine Learning
Customer churn prediction in logistics industry is one of the most prominent research topics in recent years. It consists of detecting customers who are likely to cancel a subscription to a service. Recently, logistics market has changed from a rapidly growing market into a state of saturation and fierce competition. The focus of the logistic companies has therefore shifted from building a larg...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملHypertension Prediction in Primary School Students Using an Ensemble Machine Learning Method
Introduction: The prevalence of hypertension in children is increasing, and this complication is considered the most important risk factor for cardiovascular diseases in older age. Early detection and control of hypertension can prevent its progress and reduce its consequences. Machine learning methods can help predict this complication promptly and reduce cost and time. This study aimed to pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International journal of innovative research in engineering and management
سال: 2022
ISSN: ['2350-0557']
DOI: https://doi.org/10.55524/ijirem.2022.9.5.31